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Collective diffusion coefficient in a one-dimensional lattice gas adsorbate is calculated using variational
approach. Particles interact via either a long-range, or a long-range electron-gas-mediated �for a metallic
substrate�, or a 12-6 Lennard-Jones interaction. Diffusion coefficient as a function of the adsorbate density
strongly depends on the relationship between the substrate lattice constant and the characteristic length of the
interparticle interaction potential �which determines positions of the potential energy minima�. The diffusion
coefficient at fixed density as a function of the interaction characteristic length has an oscillating character due
to the interplay between the interparticle distances allowed by the substrate lattice structure and the average
interparticle distances which minimize the total interaction energy.
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I. INTRODUCTION

Manipulation of single atoms and self-assembly tech-
niques are very useful methods in nanotechnology. Self-
assembly is determined by interatomic interactions, which at
the crystal surfaces can be direct or indirect �i.e., induced by
the substrate�. Recent studies on adatom arrangement and
their dynamics on metallic surfaces show that they experi-
ence an indirect electron-gas-mediated interactions. Elec-
tronic surface states are a source of a long-range interactions,
which decay with the interparticle distance r as 1 /r2 and
often have an oscillatory character.1–15 Such interactions be-
tween adatoms lead to their self-alignment in rows14–20 or in
hexagonal structures.6,12,21–25 This ordering mechanism is a
good candidate to be used for constructing and manipulating
nanostructure systems. Linear arrangements have unique
magnetic and/or electronic properties. The ordering dynam-
ics and a stability of an ordered structure depend on diffusion
of adatoms on the surface, while diffusion in a system of
adatoms is controlled by interactions between them.

The collective or chemical diffusion coefficient of ad-
sorbed species characterizes a relaxation of the local density
fluctuations in a many-particle system. It involves jumps of
individual atoms from one binding site to another and de-
scribes their collective movement. Theoretical description of
the collective diffusion process is a complicated many-body
problem and various approaches have been applied to it,
ranging from analytic ones based on master, Fokker-Planck,
or Kramers equations to numerical Monte Carlo or molecular
dynamics simulations. An important background is provided
in the works of Reed and Ehrlich,26 an early summary by
Gomer,27 and in reviews by Danani et al.28 and Ala-Nissila et
al.29 The variational approach to the collective diffusion
problem, used here, was developed in a series of works30–37

and was shown to be a very efficient tool to analyze collec-
tive diffusion problems for various types of interparticle in-
teractions for homogeneous or inhomogeneous substrates ei-
ther in one or two dimensions.

We have shown in Ref. 37 that the long-range repulsive
interactions can be responsible for rapid macroscopic rear-
rangements of adatoms upon minuscule adsorbate density
changes. We have shown that the adsorbate density depen-
dent diffusion coefficient has peaks at densities correspond-
ing to any ordered phase in a devil staircase phase diagram.

It is well known38,39 that the devil staircase structure emerges
when the interparticle interaction potential is repulsive and
decays faster than 1 /r. It has been shown, one the other
hand, that adatoms on metallic surfaces often interact via
forces with oscillating in r potential energies.1–15 They ex-
hibit a 1 /r2 decay modified by Friedel oscillations of the
electron-gas correlation function, meaning that particles at-
tract each other at some distances and repel at others. Such a
distance dependence of the interparticle interactions should,
in principle, result in a diffusion character similar to that
already investigated for pure 1 /r2 repulsion. On the other
hand, the oscillating interaction potential has local minima.
Similarly, a minimum is present also for the interaction of
the Lennard-Jones type. The question on how the presence of
such a minimum �or minima� affects the diffusion kinetics in
a many particle system arises. In particular, the question on
how the oscillating character of the interactions decaying
like 1 /r2 modifies diffusion in comparison with the interac-
tions decaying like 1 /r2 monotonically is interesting.

It is well known that the shape of interaction potential, in
particular, the existence of its attractive parts, is very impor-
tant for the static behavior of the system. Systems with at-
tractive interactions form stable clusters of ordered phases,
whereas ordering via repulsion is always global—it affects
the entire system. Consequently, an ordered phase due to
attractive interactions occurs for a wider range of adatom
densities so it is easier to observe experimentally.10,12,21,25

Such difference in static properties has to affect the dynamic
behavior too, so it should affect also the diffusion process.
For example, a fast collective diffusion in ordered
structures36,37 leads to a fast reorganization of the adsorbed
layer.

In this work we compare three types of interactions:
monotonically decaying like 1 /r2, the oscillating ones decay-
ing like 1 /r2 with electron-gas-mediated oscillations, and the
12-6 Lennard-Jones interactions. We analyze the influence of
the shape of the interaction potential on the diffusion coeffi-
cient at different adsorbate densities. Magnitude of the diffu-
sion coefficient depends on several parameters, most of them
related to the character and strength of the interparticle inter-
action. In what follows we analyze how periodic in r varia-
tion in the potential superimposed on the 1 /r2 decay influ-
ences diffusion. We show that for systems of particles
interacting via oscillating electron-gas-mediated forces or via
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forces corresponding to the 12-6 Lennard-Jones potentials,
the diffusion process depends sensitively on the ratio be-
tween the distance r at which the potential has a minimum
and the substrate lattice constant. This ratio allows distin-
guishing between the commensurate and incommensurate
type of diffusion kinetics. We show that the diffusion coeffi-
cient depends periodically on the characteristic length of the
potentials under investigation.

The paper is organized as follows. In Sec. II the approach
to the diffusion coefficient calculation is shortly described.
Section III contains description of results for electron-gas
mediated, oscillation potential, and then for 12-6 Lennard-
Jones potential. Section IV summarizes main results of the
work.

II. MODEL

System of N particles interacting via long-range forces is
distributed homogeneously over a one-dimensional substrate
of length L with a lattice constant a. The interaction of two
particles at the lattice positions li and lj contributes the po-
tential energy ��ali−alj� to the total energy of the system.
Following Refs. 37 and 38 we consider systems with the pair
potential energy ��r� decreasing rapidly with r. This justifies
to neglecting the next-nearest-particle interactions and ac-
counting only for pair interactions between neighbors no
matter how large the intrapair separation al is. The total in-
teraction energy of the system is �lnl��al�, where nl is the
number of nearest-neighbors pairs of length l �in units of a�,
and only l’s satisfying the condition �llnl=L are admitted in
the sum. In a grand canonical ensemble approach we let � to
vary from 0 to � and keep, instead, the system under fixed
external pressure P �in one dimension it is just an external
force�, which is determined by the condition that the mean
nearest-neighbor pair length �l� is equal to the inverse of the
actual coverage �,

�l� =
1

�
=

N

L
. �1�

In such case a probability of a pair of a length l is37,38

p��P,T� = Z1
−1�P,T�e−��̃�l,P�, �2�

where

�̃�l,P� = ��al� + aPł �3�

and

Z1�P,T� = �
l=1

�

e−��̃�l,P� �4�

is a single nearest-neighbor-pair isothermal–isobaric parti-
tion function.

Equations �2�–�4� allow determining the thermodynamic
properties of the system. In particular, the equation of state,
relation between the coverage, pressure, and temperature, is
obtained by evaluating the mean nearest-neighbor pair length

�l� = Z1
−1�P,T��

l=1

�

le−��̃�l,P� = −
1

�a
� � ln Z1

�P
�

T

, �5�

and identifying it with 1 /�. In the low temperature limit the
main contributions to this sum come from one or at most two
terms only.37

Collective diffusion of the system is modeled by a kinetic
lattice gas with the particle hopping rates depending on the
actual potential energy of the particle. The potential energy
landscape is built by the static potential due to the substrate,
as experienced by a single particle, and by interactions of the
particle with its neighbors. Time evolution of the system is
controlled by a set of master rate equations for the probabili-
ties P��c	 , t� that a microstate �c	 of a lattice gas occurs at
time t,

d

dt
P��c	,t� = �

�c�	


W��c	,�c�	�P��c�	,t� − W��c�	,�c	�P��c	,t�� .

�6�

The microstate �c	 is understood as a set of variables speci-
fying which particular sites in the lattice are occupied and
which are not. W��c�	 , �c	� is a transition probability per unit
time �transition rate� that the microstate �c	 changes into �c�	
due to a jump of a particle from an occupied site to an un-
occupied neighboring site. Microstates �c	 and �c�	 differ
here only by the position of a single particle, the one which
jumped. For thermally activated jumps the hopping rate de-
pends on the difference between the energy of the system
when the hopping particle is at an intermediate position be-
tween the sites engaged in the jump and the energy of the
system when the particle is in its initial position. The only
contributions that do not cancel out in the difference is the
energy of the hopping particle in its initial position and its
energy in the activated state at the top of the potential barrier
which it jumps over. For the particle hopping from the ad-
sorption site specified by a pair of integers �l ,s� �i.e., with
the nearest neighbors of adsorbed particles being at a dis-
tance al and as, respectively, to its left and right� to a neigh-
boring site �l� ,s��= �l�1,s�1�, the potential energy at the
initial adsorption site is

EA = EA
0 + ��al� + ��as� , �7�

where EA
0 is static potential energy at given site due to the

interactions with the substrate. The hopping rate can be writ-
ten as

W��c	,�c�	� = Wl�,s�
l,s = W0e−�
�

l�,s�
l,s

−��al�−��as��, �8�

where

W0 = � exp
− ��EB
0 − EA

0�� �9�

is a hopping rate for an isolated �i.e., noninteracting� particle
and � is an intrinsic attempt frequency. �l�,s�

l,s is the amount
by which the potential energy EB

0 of the hopping particle at a
bridge site between its initial and the final position is modi-
fied by interactions with the neighbors at each its side. We
parametrize a microstate �c	 as �c	= 
X , �m	� by selecting one
particle as a reference particle, denoting its lattice position as
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X and specifying positions �m	= �m1 ,m2 , . . . ,mN−1	 of all re-
maining N−1 particles with respect to it.37 �m	 is referred to
as a configuration. Master Eq. �6� are linear in set of prob-
abilities P�X , �m	 , t� and so their lattice Fourier transform
with respect to X can be easily done. The result is that k
components of the probabilities, P�m	�k , t�, evolve in time
independently of each other. The rate equations for P�m	�k , t�
can be expressed in terms of a k-space microscopic rate ma-
trix M�k� �with rows and columns labeled by �m	� containing
the individual hopping rates and phase factors like e�ika. De-
tails can be found in Refs. 34 and 37. The collective diffu-
sion coefficient is related to that eigenvalue −	D�k�
0
�termed the diffusive eigenvalue� of M�k� which vanishes
like k2 in the limit k→0. This eigenvalue is then estimated
from above in a spirit of a variational principle34 as

	D�k� �
�̃ · 
− M�k�� · �

�̃ · �
→ − Dk2, �10�

where the → stands for the k→0 limit and �̃ and � are
variational trial left and right eigenvectors, respectively, of
M�k� corresponding to the diffusive eigenvalue. It has been
shown34,37 that for a homogeneous substrate the �m	-th com-
ponent of the trial left eigenvector has the form

�̃�m	�k� = 1 + �
j=1

N−1

eikamj . �11�

and that ��m	�k�= P�m	
eq �̃�m	�k�, where P�m	

eq is the probability of
the configuration �m	 in equilibrium.

We calculate the diffusion coefficient D as a ratio �the k
→0 limit is implied�

D = −
	D

k2 =
M�k�
N�k�k2 , �12�

of the “expectation value” numerator

M�k� = �
�m	,�m�	

no rep

P�m�	
eq

W�m	,�m�	 � �̃�m�	
� �k� − �̃�m	

� �k�2,

�13�

to the “normalization” denominator

N�k� = �
�m̄	

P�m̄	
eq �̃�m̄	�k�2. �14�

Detailed balance condition was used to derive Eq. �13� so
each ��m	 , �m�	� term in it accounts for transitions between
�m	 and �m�	 in either direction. Therefore, each configura-
tion pair ��m	 , �m�	� appears in the sum in Eq. �13� only once

as indicated by the comment “no rep” above the sum� in
order to avoid double counting. In the grand canonical en-
semble approach, mentioned earlier, both N and M are func-
tions of P, T, and N. We note in passing that N and M are
directly related to the diffusion coefficient static �or thermo-
dynamic� and kinetic factor, respectively, which the diffusion
coefficient is customarily factorized into.26,27 The former is
controlled only by the static interactions, determining the
equilibrium properties of the system, while the latter is also

sensitive to the dynamic interactions within the adsorbate
and the dynamic interactions with the substrate, both control-
ling the rate of an approach to the thermodynamic equilib-
rium. Certain characteristic features of the density depen-
dence of the static factor, often being signatures of an onset
of an organization within the system, may or may not be
compensated by the features present in the kinetic factor,
resulting in the density dependent diffusion coefficient from
which such features may be absent. This issue for long-range
repulsive interparticle interaction was examined in detail in
Ref. 37.

It was shown37 that, for the one-dimensional system with
long-range interactions, the denominator �14� can be ex-
pressed as37

N�k = 0;P,T,N� = N
�l2� − �l�2

�l�2 , �15�

while the numerator can be written as

M�k;P,T,N� = �ka�2N�
l=1

s=2

�

Wl+1,s−1
l,s pl�P,T�ps�P,T� . �16�

The no rep restriction in Eq. �13� results in only the rates of
jumps from the left to right to be explicitly present in Eq.
�16� 
alternatively, expression mathematically equivalent to
Eq. �16� with only the right-to-left jump rates explicitly ap-
pearing in it can be used�.

To evaluate M�k� using Eq. �16� the potential energy cor-
rection due to interactions of the activated particle is needed.
One of the simplest models accounting for the activated par-
ticle interactions is obtained by realizing that the particle
hopping from the adsorption site �l ,s� to �l+1,s−1� sur-
mounts a potential energy barrier at a bridge site situated,
approximately, at a distance l+ 1

2 and s− 1
2 from its nearest

left and right adsorbed particle neighbor, respectively, and by
evaluating the interaction potential energy at the bridge by
using ��al� generalized to half-integer arguments. Conse-
quently, the potential energy correction due to interactions of
a particle at the bridge site between �l ,s� and �l+1,s−1� site
is

�l+1,s−1
l,s = ��al + a

1

2
� + ��as − a

1

2
� , �17�

which, used in Eq. �8�, leads to the following hopping rate
for the left-to-right jumps:

Wl+1,s−1
l,s = W0e−�
��al+a�1/2��+��as−a�1/2��−��al�−��as��. �18�

Using Eq. �18� in Eq. �16� yields the kinetic factor

M�k;P,T,N� = �ka�2 NW0


Z1�P,T��2��
l=1

�

e−��̃�l+�1/2���2

,

�19�

in which the definition of �̃ in Eq. �3� is used. Similarly like
in Z1�P ,T� in Eq. �4� the main contribution to the sum over
l in Eq. �19� comes from one or at most two terms for low
enough temperatures but, for a given value of P, these terms
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may correspond to different l’s than those most significant in
Z1. In general, the sum has to be evaluated numerically.

III. RESULTS

It has been shown that the potential energy of interactions
of adatoms adsorbed on metallic surfaces like Cu/Cu�111�,6
Fe/Cu�111�,15 Ce or Co on Cu�111�,9 Fe or Co on Ag�111�,14

and Ce/Ag�111�21 vary with the interatomic distance r as

��r� = − F�2 sin��F�
�

�2sin�2qFr + 2�F�
�qFr�2 , �20�

where F and qF are, respectively, the Fermi energy and the
Fermi wave vector of the surface electrons.4 Shape of the
potential energy depends also on the Fermi-level phase shift
�F, which for many systems is equal to −� /2. This value will
be used further in our calculations. As it was shown in Ref.
10 formula �20� gives only approximated value of real inter-
particle potential. In fact its dependence on the distance is
more complicated. Moreover metallic substrate mediates also
non-negligible three-body interactions between adsorbed
adatoms.5 However in our further calculations we will use
two-body interactions in form �20�. It will be shown that the
diffusion depends only on the main characteristics of the
potential shape. Value of the collective diffusion coefficient
does not depend so much on the details of the potential
shape. In fact there are some similarities in the behavior of
the diffusion coefficient even for particles interacting via so
different forces as Lennard-Jones and Eq. �20� or 1 /r2 and
Eq. �20�.

The interparticle distance dependence of the interaction
energy �20� is plotted in Fig. 1 using a dashed line. In this
plot parameter F=0.36 eV has been chosen, the value of the
order of that observed for real substrates. In further calcula-
tions of collective diffusion coefficient it is the unitless prod-
uct �F that matters; hence when energy and temperature are

rescaled simultaneously we stay with the same diffusion
curve. Distance is measured in all calculations in lattice con-
stant a, which at surface, is close to 3 Å, and again it is the
unitless product qFa which decides about the shape of diffu-
sion curves. Potential �20� is compared in Fig. 1 with a long-
range purely repulsive potential energy �alpha�r�=� /r2 used
in Refs. 37 and 38. The value of the parameter � used in Fig.
1 has been chosen in such a way that the repulsive potential
energy curve forms an upper envelope of electron-gas-
mediated potential energy �20�. Strength of both types of
interactions decays with the distance like 1 /r2, however,
whereas the forces corresponding to the � /r2 potential en-
ergy are repulsive at any interatomic separation, the potential
energy �20� oscillates, generating attractive forces at some
interparticle distances and the repulsive ones at others. At-
tractive forces in the system lead to the creation of stable
structures at the surface and should affect the dynamic prop-
erties of the system. We compare here the diffusion kinetics
in adsorbates with both types of interparticle interactions
and, in addition, in systems in which the interactions corre-
spond to the 12-6 Lennard-Jones potential energy

�LJ�r� = 4LJ���

r
�12

− ��

r
�6� , �21�

typical for interactions between neutral atoms. The param-
eters LJ and � decide about depth and position of the single
potential minimum. The Lennard-Jones potential has a repul-
sive �1 /r12 wall at short distances, much steeper than 1 /r2,
as it can be seen in the Fig. 1. At larger distances this poten-
tial is attractive and, decaying like 1 /r6, it is weak in com-
parison with any of the other two. It will be shown, however,
that the existence of this attractive part is sufficient for the
diffusion kinetics in the system with the Lennard-Jones in-
teractions to be qualitatively similar at some densities to that
in systems with oscillating interactions.

A. Diffusion in systems with electron-gas-mediated
interactions

It is known39 that a system of particles with long-range
unscreened repulsive interactions orders at T=0 at densities
�coverages� given by a rational fraction �smaller than 1�
when the interaction potential decays faster than 1 /r. The
coverage plotted against external potential has a fractal form
called a devil staircase.39 It is also known38 that systems with
interactions decaying faster than 1 /r but additionally
screened to nearest neighbors no matter how far they are �as
described in Sec. II� also form ordered T=0 phases at cov-
erages equal to 1 /n, where n is any natural number. The
“phase diagram” �density vs pressure or the chemical poten-
tial� in this case is not as complicated as that for the un-
screened interactions—it has no fractal structure. For such a
system it is possible to calculate all static properties38 as well
as to investigate fully the collective diffusion kinetics37 for
many models of microscopic kinetics. In general, the collec-
tive diffusion coefficient peaks at sufficiently low tempera-
tures at densities at which the system orders �except when
sharp drops in compressibility are compensated fully by ki-
netics for very special models of microscopic kinetics37�. For
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FIG. 1. �Color online� Interparticle interaction potential energies
as a function of the interparticle distance r. Thick solid line �red�:
�alpha�r�=� /r2 with � /a2=0.33 eV; dashed line �blue�: the oscil-
lating potential energy in Eq. �20� with qFa=0.7, F=0.36, and
�F=−� /2; thin solid line �black�: the 12-6 Lennard-Jones potential
energy in Eq. �21� with � /a=2.455 and LJ=0.031 eV.

FILIP KRZYŻEWSKI AND MAGDALENA A. ZAŁUSKA-KOTUR PHYSICAL REVIEW B 80, 155410 �2009�

155410-4



these densities and for densities around them �at finite tem-
peratures�, the diffusion is very fast, meaning that particles
have an ability to rearrange quickly when the density
changes even by a small amount.

When the interactions are purely repulsive, like for
�alpha�r�=� /r2, the rearrangement into an ordered phase oc-
curs for the entire lattice gas at once, the phase transition is
of the second order, and formation of ordered domains sur-
rounded by disordered regions with lower or higher densities
is not possible. Such possibility opens for systems with in-
teractions like in Eq. �20� which, depending on interparticle
distances alternate between repulsion and attraction. When
particles attract each other at some distances it is possible to
order the system locally even if globally the density is too
low for that.17,21 Note that when particle interact via potential
plotted in Fig. 1., r=3a is the preferred interparticle distance
�based solely on the total interaction energy considerations�,
so local ordered domains which are preferentially formed
correspond to a local coverage �=1 /3.

In Fig. 2 we compare the coverage dependence of the
diffusion coefficient plotted at two different temperatures for
the interaction potential energies plotted in Fig. 1. Let us
note that the diffusion coefficient plotted in Fig. 2 is divided
by hopping rate of the single particle �9�, which does not
depend on the density and at given temperature is constant.
Normalization of all curves by W0 causes that they all start at
D�0� /W0=1 and that curves plotted for lower temperatures
lie above curves plotted for higher temperatures. Multiplica-
tion by W0, different for each temperature, should turn over
this order. It can be seen in Fig. 2 that the character of the
curves corresponding to the interaction potential energies
��=� /r2 and the oscillating one 
given in Eq. �20�� is similar
at the same temperatures. The only significant qualitative
difference between these two cases is seen at and below �

=1 /3. The diffusion coefficient for the oscillating interaction
exhibits a peak, which is almost invisible for the system with
a purely repulsive interaction at the same temperature despite
the fact that for purely repulsive interaction the system does
order at �=1 /3 at T=0. It indicates that the presence of the
interparticle attraction for the system with oscillating inter-
action allows for an ordering corresponding to �=1 /3 al-
ready at temperatures much higher than those needed for
such ordering with the repulsive long-range interactions only.
Attraction, creating the potential energy minimum, is a nec-
essary condition for the formation of the local ordered do-
mains, allowing for their stability. The existence of such do-
mains results in characteristic convex shape of the diffusion
curve for densities lower than the ordering density. High dif-
fusion coefficient within such domains aids in their forma-
tion because collective diffusion of particles effectively con-
trols the system ability to create ordered phases.6,9,17,21 With
purely repulsive interactions the ordering is possible only
globally so the diffusion coefficient peak for �=1 /3, very
sharp at T=0, is easily smeared out by thermal fluctuations.

We show also in Fig. 2 the diffusion coefficient for the
Lennard-Jones interaction. Here, the interactions favor the
interparticle distance of about 3a, almost the same as the
oscillating interaction does, so it is not surprising that at low
concentrations both interactions result in almost the same
value of the diffusion coefficient. At higher concentrations,
however, the diffusion kinetics is controlled by a very steep
repulsive core at short distances, much steeper for the
Lennard-Jones than for any of the remaining two interac-
tions. Consequently, the diffusion coefficient increases to
very high values already at �=1 /3. More features unique to
the Lennard-Jones interaction will be discussed in Sec. III B.

In general, the character of the density dependence of the
collective diffusion coefficient strongly depends on how
closely the minima and the maxima of the oscillating inter-
action potential energy match the distances between particles
which occupy the substrate lattice sites. In Fig. 3 the inter-
action potential energies for several values of qF are shown.
It can be seen that the position of the first minimum moves
toward higher interparticle distances with decreasing qF.
Geometrically, the minimum interparticle distance possible is
a, the substrate lattice constant, and the overall character of
the coverage dependence of the diffusion coefficient is to a
major extent determined by the character of the interaction at
this particular interparticle distance.

If at the separation a the interparticle interaction is
strongly repulsive, as it is for qF=0.3 /a, 0.35 /a, 0.7 /a, or
1 /a, then the diffusion coefficient behaves as a function of
coverage �for coverages between ��1 /2 and 1�, similar to
that corresponding to a purely repulsive interaction �as seen
already in Fig. 2 for qF=0.7 /a�: it raises rapidly when the
coverage approaches the value �=1 /2 from below, suffers a
kink, and then decreases slowly with further increase in �.
This behavior was already analyzed for a purely repulsive
long-range interaction in Fig. 9 of Ref. 37. It can be traced
back to the behavior of the diffusion coefficient static factor,
proportional to 1 /N �i.e., proportional to an inverse of an
isothermal compressibility�, modified by the behavior of the
kinetic factor, proportional to M. For these values of qF the
particles avoid occupying the nearest-neighbor sites, so for
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FIG. 2. �Color online� Density dependence of the collective dif-
fusion coefficient divided by the single-particle hopping rate W0 at
temperatures �=1 /kBT=60 eV−1, T=193 K �higher curves� and
�=20 eV−1 T=580 K �lower curves� for the interaction potential
energies plotted in Fig. 1. Thick continuous lines �red�: for ���r�
=� /r2; dashed line �blue�: for the oscillating potential energy in Eq.
�20�; thin solid line �black�: for the 12-6 Lennard-Jones potential
energy in Eq. �21�. The interaction potential energy parameters are
the same as in Fig. 1.
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��1 /2 they preferentially occupy every second lattice site.
A substantial additional pressure is needed to compress the
system above half occupation of the lattice, the isothermal
compressibility is very low, i.e., the static factor goes
through a sharp maximum at �=1 /2. The overall shape of
the density dependence of the diffusion coefficient is deter-
mined, however, by both the static and the kinetic factor.
With the hopping rates given in Eq. �18� the high value for
interaction potential energy at the interparticle distance a re-
sults in a kinetic factor, which also increases sharply at �
=1 /2 but does not reach a maximum there. Instead, for �

1 /2 variations in the kinetic factor almost perfectly com-
pensate for the variations in the static factor for these densi-
ties. The compensation between both factors for 1 /2��
�1 results in the diffusion coefficient, which only slowly
decreases as a function of � over this coverage interval.

The structure observed in Fig. 4 at coverages below �
=1 /2 �i.e., at ��1 /3 and smaller� for qFa�0.7 may be un-
derstood in a similar way. In these cases the interparticle
interaction is strongly repulsive not only at a separation a but
also at the next possible one, 2a, so at coverages close to �
�1 /3 the particles preferentially occupy every third site
with the resulting compressibility minimum at that coverage.
We can see in Fig. 4 that locally, within the coverage interval
0.3���0.47, the behavior of the diffusion coefficient for
the interactions corresponding to qFa�0.7 is quite reminis-
cent of that within the interval around �=1 /2 and above it
�for the same values of qF and also qF=1 /a�: a sharp in-
crease at �=1 /3 is followed by a slow diffusion coefficient
decrease with increasing � �until the singularity at �=1 /2
takes over�. For still lower qF’s similar structures are ob-

served in Fig. 4 around �=1 /6 and even 1/7.
It was checked that upon increasing qF gradually up from

0.7 /a the structure around �=1 /3 in Fig. 4 evolves initially
into the locally concave dependence around �=1 /3 and then
into the locally convex one, as seen in Fig. 4 for qF=1 /a.
Further increase in qF washes out the only remaining struc-
ture around �=1 /2; D��� becomes a structureless concave
function �as seen for qF=1.5 /a� and then it evolves into a
convex one �as seen for qF=2.5 /a�. It is worth noting that
the evolution of the D��� from a function with the structure
at �=1 /2 for qF=1 /a through the concave structureless
function for qF=1.5 /a and then to the convex one for qF
=2.5 /a parallels the evolution of D��� observed in Figs. 3
and 4 of Ref. 32 for the short-range interaction changing
from the strongly repulsive, through the weakly repulsive, to
the attractive one. Indeed, as seen in Fig. 3, the interparticle
interaction at a distance a is strongly repulsive for qF=1 /a,
weakly so for qF=1.5 /a and somewhat attractive for qF
=2.5 /a.

Convex shape of D��� is characteristic for systems with
dominant attractive interparticle interactions, which cause
them to bond and to form clusters. When particles stay on
average at distances that minimize the total interaction en-
ergy, the jump rates are lowered according to Eq. �8�, result-
ing in a decrease in the diffusion coefficient kinetic factor.
Diffusion for qF=2.5 /a oscillating interaction decreases gen-
erally as a function of density. The decrease, quite fast at low
coverages, slows down at higher ones. We note also that all
D��� curves in Fig. 4 for qF�1 /a start as convex functions
of coverage already at �=0 and the characteristic smallest
coverage at which they suffer a sudden decrease in its slope
is �l=1 /7, 1/6, 1/3, and 1/2 for qFa=0.3, 0.35, 0.7, and 1,
respectively. In each case, the corresponding value of a /�l is
equal to the interparticle distance l0 �in units of a� at which
the potential energy �20� with the appropriate value of qF has
the first deepest minimum in Fig. 3. For a particular oscillat-
ing interaction �i.e., particular qF�, the smallest coverage �l at
which D��� ceases to be a convex function is a boundary

0 1 2 3 4 5 6 7 8 9 10
r/a

0 1 2 3 4 5 6 7 8 9 10

qF=2.5/a

qF=1.5/a

qF=1.0/a

qF=0.7/a

qF=0.35/a

qF=0.3/a

FIG. 3. �Color online� Interparticle potential energies �20� as a
function of the interparticle interaction distance r for several values
of qF �from 0.3 /a up to 2.5 /a� and F=0.36 eV

0.01

0.1

1

10

100

1000

10000

100000

0 0.2 0.4 0.6 0.8 1

D
/(

W
0 a2 )

θ

qF=0.3/a

qF=0.7/a

qF=1.5/a

qF=2.5/a

qF=1/a

qF=0.35/a

FIG. 4. �Color online� Density dependence of the diffusion co-
efficient divided by the single particle hopping rate W0 in the sys-
tem with oscillating interparticle interaction �20� for several values
of qF �from 0.3 /a up to 2.5 /a—the same as in Fig. 3�, F=0.36, and
�=60 eV−1
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between the coverages ����l� for which the interparticle
attraction dominates and the ones ��
�l� for which the re-
pulsion does dominate.

To show how diffusion coefficient behaves in real systems
we have used potentials encountered by adatoms at three
different �111� metallic surfaces. These examples are plotted
in Figs. 5 and 6. We have used potential parameters calcu-
lated in Ref. 4, surface lattice constants observed for ad-
sorbed atoms and temperatures used in experiments. In each
case parameter qFa is rather low, i.e., 0.55 for Cu�111�, 0.48
for Au�111�, and 0.37 for Ag�111�. It means that l0=4.08,
4.69, and 6.08, respectively. We show here diffusion at much
lower temperatures than that in Figs. 3 and 4. Diffusion at so
low temperatures changes with density by orders of magni-

tude; hence we plot diffusion coefficient for low densities up
to ��=0.4� only. This is density range, which is realized in
experiments. As shown above characteristic behavior of the
diffusion curve for particles that attract each other at some
distances is decay at �=0 and then a structureless convex
function of density up to �l=1 / l0 �when mean interparticle
distance is equal to the position of the deepest potential mini-
mum�. Above �l repulsion between adatoms causes an in-
crease in the diffusion coefficient. The mechanism of such
diffusive behavior lies in fact that particles create domains,
in which attractive forces increase activation barriers for
single particle jumps and all possible movements slow down.
Such situation is true when occupation increases until all
system is covered by single domain at �l=1 / l0. We can see
that for each presented substrate wide diffusion minimum
exists. It is present up to 1/6 for Ag, where l0=6.08, 1/4 for
Cu, where l0=4.09 and very interestingly �0�0.5�1 /4
+1 /5� for Au, where l0=4.69, which means that in this last
case system realizes ordered structure by half distances equal
to 4 and half equal to 5. Wide minimum of diffusion coeffi-
cient means that for these ranges of densities particles con-
densate in stable domains with empty spaces between them.
Mobility of single particle is W0, much higher than mobility
of particle which belongs to ordered cluster; thus each single
particle immediately attaches one of the structures. Similarly
all density fluctuation above domain density will decay very
quickly with a rate equal to D��l�. In Fig. 6 we see how the
differences between diffusion coefficient at �=0, �=�l and at
densities in between increase with decaying temperature,
which is related to the fact that ordered domains at low tem-
peratures are more stable.

Character of the interparticle interaction at closest pos-
sible separations, i.e., repulsion, attraction, or the potential
energy minimum, determines the overall shape of the D���
dependence. For small qFa’s, the particles that reside at clos-
est possible separations from their neighbors experience the
interaction induced repulsion. With increasing qFa they find
themselves first at the interaction potential energy minimum,
then experience attraction and then the interaction energy
maximum. The cycle repeats with further increase in qFa.
Such a cycle of successive repulsions and attractions at a
given separation should lead to a nonmonotonic dependence
of the diffusion coefficient on the parameter qF at a particular
fixed coverage: we expect that after a monotonic qFa depen-
dence of D for qFa up to about 1, the diffusion coefficient
should pass through a series of minima and maxima as qFa
further increases. Indeed, this is observed in Fig. 7 in which
D is plotted against qFa for fixed coverage. Following the
curve for �=1 /6 we observe a monotonic decrease in D until
a minimum is reached for qFa�0.7. With further increase in
qFa the maximum is reached for qFa�0.8, followed by a
minimum around qFa�1, a maximum around qFa�1.4, and
a minimum again, at qFa�2.1. The oscillations of D con-
tinue with increasing qFa but their amplitude decreases mir-
roring the decreasing amplitude of oscillations of the inter-
action potential energy ��r=const� with increasing qFa 
c.f.
Eq. �20��. For �=1 /3 the qF dependence of D is very similar
to that for �=1 /6 except that the former starts with much
higher value for small qFa and has an inflection point around
qFa�0.7 rather than a narrow minimum followed by a nar-
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FIG. 5. �Color online� Density dependence of the diffusion co-
efficient divided by single particle hopping rate W0 for Ce, Co, or
Fe/Ag�111� with F=0.41 eV, qF=0.129 Å−1, a=2.89 Å �Refs. 4,
9, 12, and 14�, Co, Fe/Au�111� with F=0.12 eV, qF=0.173 Å−1,
a=2.8 Å �Ref. 4� and Ce, Cu, Ce or Fe /Cu�111� with F

=0.39 eV, qF=0.217 Å−1, a=2.56 Å �Refs. 4, 9, 12, and 25� at
temperature T=39 K.
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FIG. 6. �Color online� Density dependence of the diffusion co-
efficient divided by single particle hopping rate W0 for Ce, Co or
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row maximum. The same behavior shows curve with �
=1 /2 with inflection point at qFa=1. Beyond qFa�2 all
curves follow closely each other.

B. Diffusion of particles interacting via
Lennard-Jones potential

Neutral particles are known to interact via long-range
Lennard-Jones potential energy �21�. Its repulsive core falls
off more rapidly than 1 /r2 �in fact, it falls as 1 /r12, reaches
an equilibrium position minimum at rmin=21/6�, and is at-
tractive at larger distances, falling off like 1 /r6�. A staircase
of ordered phases at coverages �=1 /n is supported by such
an interaction �similarly like for a purely repulsive interac-
tion�, the most prominent ones being �=1 /2 and 1/3, and
due to huge repulsion at short distances the diffusion coeffi-
cient of particles ordered in such phases is abnormally large
in comparison to that when the system is not ordered. We
plot in Fig. 8 the coverage dependence of the diffusion co-
efficient at fixed temperature in a system with Lennard-Jones
interactions corresponding to several values of � 
the other
parameter in Eq. �21�, LJ is not varied�. The overall shape of
the presented curves is determined by an interplay between
two length parameters in the system: the distance rmin
=21/6� below which particles repel each other, and the sub-
strate lattice permitted minimum separation a between inter-
acting particles.

We can systematically analyze shapes of the D��� curves
in Fig. 8. For �=0 there are no interparticle interactions
�except for site blocking� and D��� /W0a2=1 as seen in Fig.
8. For �=0.89a we have rmin=a so when 0���0.89a the
interaction between particles separated by a is attractive.
Consequently, it is energetically preferable for particles to be
as close to each other as possible and for such values of � the
D��� dependence is convex �as seen for �=0.7a and 0.89a in
Fig. 8�, typical for systems for which the interparticle attrac-
tion dominates �c.f. Fig. 4 in Ref. 32�. For �
0.89a the
interaction at the closest separation r=a becomes repulsive

and, indeed, for �=a, the D��� dependence becomes con-
cave, resembling qualitatively D��� for weakly repulsive
short range interaction in Fig. 3 of Ref. 32. With further
increase in � the repulsion at r=a increases: for �=1.1a we
note a characteristic maximum of D around �=1 /2 also ob-
served already for stronger short-range interactions in Fig. 3
of Ref. 32. For �=1.3a the repulsion at r=a is strong enough
to induce a preferential occupation of every second site �note
that the interaction at the r=2a separation is still weakly
attractive in this case�, causing the diffusion coefficient to
suddenly raise by many orders of magnitude as � approaches
1/2 from below.

With further increase in � we reach, at �=2a /21/6

=1.78a, the point beyond which the interaction at r=2a is no
longer attractive. For � somewhat larger than 1.78a we have
a very strong repulsion at r=a and a much weaker one at r
=2a. We see in Fig. 8 that for �=2.2a a local maximum of
D��� develops for ��1 /3, hinting at a preferential occupa-
tion of every third site around this coverage due to repulsion
for r=2a, followed by a sharp, almost discontinuous raise of
D at �=1 /2 due to an extremely strong repulsion at r=a.
With further increase in � the repulsion at r=2a becomes
stronger so the structure around �=1 /3 becomes as sharp as
that around �=1 /2. The examples are curves for �=2.3a,
2.6a, and 2.8a in Fig. 8. For the latter, however, the interac-
tion at the separation r=3a is also repulsive. In fact, with
further increase in � features similar to those around �
=1 /2 and 1/3 develop also around �=1 /4, as seen for �
=3.4a. This is because for �
3a /21/6=2.67a the interaction
at the separation r=3a becomes repulsive and, when strong
enough, it leads to a preferential occupation of every fourth
site for ��1 /4. This structure is not present yet for �
=2.8a at the temperature selected in Fig. 8.

The character of the coverage dependence of the diffusion
coefficient changes qualitatively every time when the inter-
action between particles becomes repulsive at any of the in-
terparticle separations permitted by the substrate lattice, i.e.,
every time when � increases through na /21/6. For � such
that n /21/6�� /a� �n+1� /21/6 the particles separated by dis-
tances r=a ,2a , . . . ,na repel each other �with the repulsion
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being stronger for shorter separations� while they attract each
other for separations r= �n+1�a and larger. In such case one
expects at T�0 a sharp increase in the diffusion coefficient
at coverages �=1 /2,1 /3, . . . ,1 / �n+1� due to the low tem-
perature structural organization of the adsorbate at these cov-
erages to minimize the total interaction energy in the system.
In our runs done at lowest temperatures for which the calcu-
lations are feasible we see such structures for �=1 /2, 1/3,
and 1/4. Still, one expects that as the parameter � is varied
one should observe a nonmonotonic oscillatory changes in
the diffusion coefficient at low enough coverages. Indeed,
this is seen in Fig. 9 in which D��=1 /5� is plotted as a
function of � /a. The maxima are noted for � /a approxi-
mately half way between �=na /21/6 for n=1,2 ,3 ,4 , . . ., i.e.,
for � /a�1.3,2.2,3.1, . . ., for which the interaction is al-
ready strongly repulsive for all interparticle separation up to
a ,2a ,3a , . . ., respectively.

IV. CONCLUSIONS

Variational approach has been applied to examine collec-
tive diffusion in a one-dimensional lattice gas systems with
two type of long-range interparticle interaction: the electron-
gas-mediated interaction described by the oscillating Friedel-
like potential energy �20�, and the Lennard-Jones interaction
corresponding to the potential energy �21�. We have dis-
cussed the features of the coverage �adsorbate density� de-
pendence of the diffusion coefficient for both these interac-
tions and compared them with those investigated in detail for
purely repulsive long-range interaction37 corresponding to
the potential energy �1 /r2 as well as with the behavior typi-
cal for short-range repulsive and attractive interactions.32

In general, at densities above half coverage ��
1 /2�, at
which the interparticle repulsion at short distances plays a
main role, the diffusion coefficient for the repulsive and the
oscillating interaction behaves, as a function of coverage,
qualitatively similarly: the diffusion coefficient is much
higher than without interactions and depends on coverage
relatively weakly. This is true even for the Lennard-Jones
interaction, except that a very steep repulsive core in this

case, making creation of a high density adsorbate energeti-
cally very costly, results in huge values of the diffusion co-
efficient at such densities.

At lower densities, the behavior of the coverage depen-
dence of diffusion coefficient for the Lennard-Jones interac-
tion, repulsive for interparticle separations r�rmin and at-
tractive for r
rmin, is quite easy to understand. At
sufficiently low temperatures, it experiences for increasing �
a finite series of progressively sharper increases at “critical”
coverages �=1 /n �n=nmax,nmax−1, . . . ,2�. The first one, for
�=1 /nmax, corresponds to the largest interparticle distance
r=nmaxa�rmin at which the interaction between the particles
is still repulsive 
i.e., at the separation r= �nmax+1�a
rmin
the interaction is already attractive�. As temperature in-
creases, the structures at lower densities of this series are
usually smoothed out. In fact, we observe for the Lennard-
Jones interaction a delicate interplay between two length
scales: the lattice constant a which determines what actual
distances between particles are possible, and the characteris-
tic length of the interaction potential, rmin, separating the
short-range repulsion from the attraction at larger distances.
When rmin�a then the repulsive core of the interaction is
irrelevant and the diffusion coefficient exhibits features simi-
lar to those observed for short-range attractive interactions.

It appears that the character of diffusion for the oscillating
interactions is similar to that for particles interacting via
Lennard-Jones forces. It is the position of the first deepest
minimum, which decides about the boundary density �l up to
which each diffusion curve for oscillating potential is con-
vex. Above �l=1 / l0 diffusion coefficient behaves similarly to
this for � /r2 potential, it has sharp jumps for each �=1 /n
with n being natural number, and then it slowly decays. The
existence of multiple interaction potential energy minima
and, consequently, alternating regions of interparticle attrac-
tion and repulsion can only modify value of the diffusion
coefficient. Such modification can be realized via static as
well as kinetic part of diffusion coefficient, which means that
either adsorption wells or barriers are changed by interac-
tions. Oscillating nature of the interaction potential is more
important for higher values of qFa, where minima and
maxima are narrow and contain one lattice site only. For
lower values of qFa �more important for real adsorbates at
metallic surfaces�, minima are wide and contain several lat-
tice sites �see Fig. 3�; hence it is not surprising that at low
densities diffusion coefficient behaves similarly to that for
Lennard-Jones potential. Structures built by attractive inter-
particle interactions are capable of creating local domains of
ordered phases. Collective diffusion coefficient of the system
built by such domains is much lower than the single-particle
mobility W0 and at low temperatures stays almost constant
up to ordering density, above which is increases rapidly.

At fixed density diffusion coefficient for both interaction
types oscillates as a function of the interaction characteristic
length due to the interplay between the interparticle distances
allowed by the substrate lattice structure and the average
interparticle distances, which minimize the total interaction
energy. It means that small modification of the relation be-
tween interaction constant qF and lattice constant a can in-
duce large change in the diffusion coefficient.
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